martes, 15 de mayo de 2012

Definición: Presión es la fuerza normal por unidad de área, y está dada por:
http://auladiver.wikispaces.com/file/view/2neumat3.gif/80026027/2neumat3.gif

Donde P es la fuerza de presión, F es la fuerza normal es decir perpendicular a la superficie y A es el área donde se aplica la fuerza.
Las unidades de presión son:
En el Sistema Internacional de unidades (S.I.) la unidad de presión es el pascal que equivale a la fuerza normal de un newton cuando se aplica en un área de metro cuadrado. 1pascal = 1N/m 2 y un múltiplo muy usual es el kilopascal (Kpa.) que equivale a 100 N/m 2 o 1000 pascales y su equivalente en el sistema inglés es de 0.145 lb./in 2 .
PRESIÓN DE UN FLUIDO
Un sólido es un cuerpo rígido y puede soportar que se le aplique fuerza sin que cambie sensiblemente su forma, un líquido solo puede soportar que se le aplique fuerza en una superficie o frontera cerrada si el fluido no esta restringido en su movimiento, empezará a fluir bajo el efecto del esfuerzo cortante en lugar de deformarse elásticamente.
La fuerza que ejerce un fluido sobre las paredes del recipiente que lo contiene actúa siempre en forma perpendicular a las paredes.

Los líquidos ejercen presión en todas direcciones.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjXFPfNKcPZ1lNFDkw4pnosQoV3FwZGbHFA2vkHOfeCOXcKZpc1Y3kDTbXylg58ROgby4TZvfB6CIHiTgGiOkqtatQvVlrQ-DojxHXdsfSS1LzzoOyju6BdaHYQSQEdX_8dQGH9NlksIZ9N/s1600/stop-animated-gif-movies.gif
La presión de un líquido a cierta profundidad es la misma en todo el fluido a ésa profundidad y es igual al peso de la columna del fluido a esa altura.

Matemáticamente tenemos que:
W = DV Donde W es el peso de la columna del líquido D es la densidad
de peso o peso específico del mismo y V es el volumen de la columna. Pero
V = Ah, es decir área de la base por la altura, entonces W=DAh y si
P=W/A, o P= DAh/A simplificando A la presión de un líquido quedaría P = Dh o P = gh
En otras palabras, la presión del fluido en cualquier punto es directamente proporcional a la densidad del fluido y a la profundidad bajo la superficie del mismo.

Presión Atmosférica.
Es el peso de la columna de aire al nivel del mar.
P Atm. =1Atm. = 760 mm-Hg = 14.7 lb/in 2 (psi)= 30 in-Hg=2116 ln/ft 2
Presión barométrica.
Es la presión que se mide mediante un barómetro* el cual se puede usar como un altímetro y puede marcar la presión sobre o bajo el nivel del mar.
* Barómetro: Instrumento que sirve para medir la presión atmosférica.
Presión manométrica.
Es la presión que se mide en un recipiente cerrado o tanque.
Presión Absoluta.
P ABS. = P ATM. + P MAN.
Es igual a la suma de la presión atmosférica más la presión manométrica.

APLICACIONES.
Ley de Pascal.

“La presión ejercida sobre la superficie libre de un líquido confinado dentro de
un recipiente se transmite con la misma intensidad a todo el fluido.”
Una de las aplicaciones de esta Ley es en la “Prensa hidráulica” la cual consiste en dos cilindros conectados en su parte inferior de diferentes diámetros y que tienen dos émbolos o pistones y en los cuales si en uno de ellos se aplica una fuerza, la presión de un líquido, generalmente un aceite.
Si llamamos P e a la presión de entrada en el émbolo menor y P s a la presión de salida en el émbolo mayor, entonces la presión de entrada es igual a la presión de salida P e = P s , entonces si P=F/A
F e /A e =F s /A s o sea fuerza de entrada sobre el área de entrada es igual a la fuerza de salida entre el área de salida.

Área de
entrada


ECUACIÓN DE BERNOULLI

Formulación de la ecuación

Bernoulli en su obra Hidrodinámica (1738) expuso este principio, que expresa que, en un fluido perfecto (sin viscosidad , ni rozamiento ) en regimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido.
La Ecuación de Bernoulli describe el comportamiento de un fluido moviéndose a lo largo de una línea de corriente .
v = velocidad del fluido a lo largo de la línea de corriente
g = constante gravitatoria
y = altura geométrica en la dirección de la gravedad
P = presión a lo largo de la línea de corriente
? = densidad del fluido
Para aplicar la ecuación se deben realizar los siguientes supuestos:
  • Viscosidad (fricción interna) = 0
  • Caudal constante
  • Fluido incompresible - ? es constante
  • La ecuación se aplica a lo largo de una línea de corriente

El nombre de la ecuación se debe a Daniel Bernoulli , aunque en la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler .

Un ejemplo de aplicación del principio lo encontramos en el Flujo de agua en tubería .
Obtenido de " http://es.wikipedia.org/wiki/Principio_de_Bernoulli "

Aplicabilidad

Esta ecuación se aplica en la dinámica de fluídos. Un fluído se caracteriza por carecer de elasticidad de forma, es decir, adopta la forma del recipiente que la contiene, esto se debe a que las moléculas de los fluídos no están rígidamente unidas, como en el caso de los sólidos. Fluídos son tanto gases como líquidos.
Para llegar a la ecuación de Bernoulli se han de hacer ciertas suposiciones que nos limitan el nivel de aplicabilidad:
  • El fluído se mueve en un régimen estacionario, o sea, la velocidad del flujo en un punto no varía con el tiempo.
  • Se desprecia la viscosidad del fluído (que es una fuerza de rozamiento interna).
  • Se considera que el líquido está bajo la acción del campo gravitatorio únicamente.

Efecto Bernoulli

El efecto Bernoulli es una consecuencia directa que surge a partir de la ecuación de Bernoulli: en el caso de que el fluído fluja en horizontal un aumento de la velocidad del flujo implica que la presión estática decrecerá.
Un ejemplo práctico es el caso de las alas de un avión, que están diseñadas para que el aire que pasa por encima del ala fluya más velozmente que el aire que pasa por debajo del ala, por lo que la presión estática es mayor en la parte inferior y el avión se levanta.

Tubo de Venturi

El caudal (o gasto) se define como el producto de la sección por la que fluye el fluído y la velocidad a la que fluye. En dinámica de fluídos existe una ecuación de continuidad que nos garantiza que en ausencia de manantiales o sumideros, este caudal es constante. Como implicación directa de esta continuidad del caudal y la ecuación de Bernoulli tenemos un tubo de Venturi.
Un tubo de Venturi es una cavidad de sección S1 por la que fluye un fluído y que en una parte se estrecha, teniendo ahora una sección
S2 >S1. Como el caudal se conserva entonces tenemos que v2>v1.
Si el tubo es horizontal entonces h1 =h2, y con la condición anterior de las velocidades vemos que, necesariamente, P1>P2. Es decir, un estrechamiento en un tubo horizontal implica que la presión estática del líquido disminuye en el estrechamiento.

Breve historia de la ecuación

Los efectos que se derivan a partir de la ecuación de Bernoulli eran conocidos por los experimentales antes de que Daniel Bernoulli formulase su ecuación, de hecho, el reto estaba en encontrar la ley que diese cuenta de todos esto acontecimientos. En su obra Hydrodynamica encontró la ley que explicaba los fenómenos a partir de la conservación de la energía (hay que hacer notar la similitud entre la forma de la ley de Bernoulli y la conservación de la energía).


Posteriormente Euler dedujo la ecuación para un líquido sin viscosidad con toda generalidad (con la única suposición de que la viscosidad era despreciable), de la que surge naturalmente la ecuación de Bernoulli cuando se considera el caso estacionario sometido al campo gravitatorio.

Ejemplos

1. Estampadora neumática
Máquina que aprovecha la deformación plástica del material para crear mediante un golpe de estampa una determinada forma; por ejemplo la acuñación de monedas. Utilizamos un cilindro de simple efecto que portará la matriz o estampa, cuya velocidad de golpe se garantiza con un regulador unidireccional. Es accionada por un operario mediante un pulsador de seta, de forma que sólo estará operativo cuando una mampara de metacrilato se cierre pisando un final de carrera e impidiendo que el brazo del operario acceda por accidente a la herramienta.
http://www.sicomec.it/TF_150-TF_150TT_xg_copia.gif
Control de la puerta de un autobús
El control de apertura y cierre de la puerta de un autobús es llevada a cabo por el chofer que acciona una palanca, pero sólo podrá operar si el autobús está parado (es decir, con el freno de mano echado). Además, por normativa de seguridad, todos los autobuses deben tener un pulsador exterior de apertura en caso de emergencia. El control exterior e interior van conectados por una válvula selectora de caudal (O). Por último se puede regular la velocidad de apertura y cierre.

Atracción de un parque temáticohttp://parroquiaabla.blogia.com/upload/20080913000521-autobus.gif
Estás en Port Aventura y te has montado en el tren del Oeste; al pasar cierto lugar las ruedas de la máquina pisan un pedal que provoca la salida rápida de un muñeco con forma de pistolero quedespués se esconde lentamente.
http://photoshopcontest.com/images/large/0l7hrqshhb7f392ib2ymgn9t89laedgr5ama.gif

Válvula


Según el diccionario de la Real Academia, una válvula es un Mecanismo que regula el flujo de la comunicación entre dos partes de una máquina o sistema. Sin embargo las tres acepciones siguientes se refieren a mecanismo que dejan pasar un fluido en un sentido y lo impiden en el contrario (incluido el llamado fluido eléctrico). En la industria, a menudo se refiere la palabra a estos últimas acepciones, pero en el lenguaje, ha tomado en muchas ocasiones el sentido de la primera acepción. De este modo, podría definirse una válvula como un dispositivo mecánico con el cual se puede iniciar, detener o regular la circulación (paso) de líquidos o gases mediante una pieza movible que abre, cierra u obstruye en forma parcial uno o más orificios o conductos.
La válvula es uno de los instrumentos de control más esenciales en la industria. Debido a su diseño y materiales, las válvulas pueden abrir y cerrar, conectar y desconectar, regular, modular o aislar una enorme serie de líquidos y gases, desde los más simples hasta los más corrosivos o tóxicos. Sus tamaños van desde unos milímetros hasta los 90 m o más de diámetro (aunque en tamaños grandes suelen llamarse compuertas). Pueden trabajar con presiones que van desde el vacio hasta mas de 140 MPa (megapascales) y temperaturas desde las criogénicas hasta 1100 K (kelvin). En algunas instalaciones se requiere un sellado absoluto; en otras, las fugas o escurrimientos no tienen importancia.
La palabra flujo expresa el movimiento de un fluido. Para la cantidad total de fluido que pasa por una sección determinada de un conducto por unidad de tiempo, en castellano se emplea la palabra caudal.

Pistón

pistón desde su parte inferior. Se observan los segmentos y los orificios que alojan al eje de la biela.
Se denomina pistón a uno de los elementos básicos del motor de combustión interna.
Se trata de un émbolo que se ajusta al interior de las paredes del cilindro mediante aros flexibles llamados segmentos o anillos. Efectúa un movimiento alternativo, obligando al fluido que ocupa el cilindro a modificar su presión y volumen o transformando en movimiento el cambio de presión y volumen del fluido.
A través de la articulación de biela y cigüeñal, su movimiento alternativo se transforma en rotativo en este último.

Puede formar parte de bombas, compresores y motores. Se construye normalmente en aleación de aluminio.
Los pistones de motores de combustión interna tienen que soportar grandes temperaturas y presiones, además de velocidades y aceleraciones muy altas. Debido a estos se escogen aleaciones que tengan un peso específico bajo para disminuir la energía cinética que se genera en los desplazamientos. También tienen que soportar los esfuerzos producidos por las velocidades y dilataciones. El material más elegido para la fabricación de pistones es el aluminio y suelen utilizarse aleantes como: cobre, silicio, magnesio y manganeso entre otros.

Émbolo

Descripción

El émbolo es una barra cuyos movimientos se encuentran limitados a una sola dirección como consecuencia del emplea de guías. Solamente está sometido a esfuerzos de tracción y compresión.

arribaUtilidad

El émbolo se emplea en dos utilidades básicas:
  • Si analizáramos el desplazamiento de la biela en un mecanismo biela-manivela observaríamos que su pie sigue un movimiento lineal alternativo, pero la orientación de su cuerpo varía constantemente dependiendo de la posición adoptada. Para conseguir un movimiento lineal alternativo más perfecto se recurre al émbolo.
  • El émbolo también se emplea en multitud de mecanismos que trabajan con fluidos a presión. Ejemplos simples pueden ser: las bombas manuales para hinchar balones o las jeringuillas.